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Abstract 

It is commonly believed that the optimum solvent ratio in countercurrent 
distribution and chromatography may be expressed as V = V,/VL = (K,, 
K,J-”’. Here Vv and VL are the volumes of mobile and stationary phases. 
This expression, proposed by Bush and Densen and widely accepted, Ieads 
to optimum separations only under special conditions. Under most commonly- 
encountered situations in chromatographic and countercurrent systems, better 
separations may be achieved by reducing V to the lowest practicable level. 
Measures of separation effectiveness include resolution, extent of separation, 
total percent impurity, and quantity factor, the latter two of which are herein 
developed. Computer simulation is used for testing existing separation para- 
meters and developing new ones on a rational and scientific basis. 

Finding suitable stationary and mobile phases in countercurrent distri- 
bution (CCD) and liquid chromatography (LC) is a critical problem. 
When systems are found in which the physical and chemical properties, 
as well as economic factors in preparative fractionations, are appropriate, 
separations may be carried out. The effectiveness of the fractionation will 
depend upon several additional factors. Of these the choice of cutpoint in 
the distribution profile and solvent-volume ratios are considered in this 
work. All data are the result of mathematical computation and computer 
simulation. 
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144 METZGER, BARFORD, AND ROTHBART 

CHOICE OF CUTPOINT 

In either preparative or analytical work, separation of two components 
from one another requires at least three boundaries. These are at the 
leading and trailing edges of the distribution profiles and between the two 
solute profiles. The latter of these is the cutpoint under discussion. 

When choosing this point in a distribution profile, two factors must be 
considered. The resulting fractions should be high in purity and should 
contain relatively large amounts of the desired components This is 
especially true for a preparative experiment. To express these concepts 
of purity and quantity mathematically, the following notation for a two- 
solute two region system is used. 

mij  = the number of moles of Component i in Regionj; 

mi, = total number of moles of Component i. 
mtj  = total number of moles in Region j .  
mrr = total number of moles of both solutes. 

i = 1,2; j = 1,2. 

Here the t represents summation over the missing subscript. 
The concept of “total percent impurity” (TPI) will be used as a measure 

of quality. In the following discussion it is assumed that Component 1 is 
favored in Region 1 and Component 2 is favored in Region 2. The im- 
purity of Region 1 is defined as m 2 1 / m f l ,  that is, m21/(mll + mzl) .  Then 

The total amount of solutes partitioned into their appropriate regions 
is represented by the “quantity factor” (QF) : 

QF = mii  + m22 

An unstated goal of many separations is the maximization of QF and the 
minimization of TPI. Although more than one boundary between the 
profiles may be utilized, the present discussion is restricted to single cut- 
points in order to fulfill the first of these goals. No cutpoint which meets 
both of these goals is known ( I ) .  Glueckauf (2) proposed that a cut be 
made such that the impurities in each region were equal, i.e., m2,1m,, = 
m, 2/mt2. The utility of this approach was discussed for separations where 
the components were almost completely resolved. As Said (3) pointed out, 
an analytic expression cannot be derived which predicts this cutpoint for 
actual chromatographic zones of the normal distribution type when m,, # 
m2t. Under this condition the “optimum” cutpoint is difficult to locate. 

(2)  
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CHROMATOGRAPHY AND CCD 1 4s 

When equal amounts of the two solutes are to be separated, the “impu- 
rities equal” cutpoint occurs at the geometric mean of the retention 
volumes and tends to give low values of TPI. 

Rietema (4)  has proposed an “efficiency number,” E, for evaluating 
separations, and Rony (5) has described a similar term which he called 
“extent of separation,” 5 .  Some forms of these terms for a two-component 
two-region separation, using the aforementioned notation, are 

In elution chromatography, for which CCD is a model, it was proposed 
that the optimum cutpoint is that which maximizes 5.  For Gaussian dis- 
tribution profiles this point corresponds to the intersection of the nor- 
malized profiles (6). 

The third cutpoint discussed is that at  the intersection of the two molar 
distribution profiles. This cutpoint maximizes QF because it assigns to 
Region 1 all fractions containing a majority of Solute 1 and to Region 2 
all fractions containing a majority of Solute 2. No assumptions are made 
about the shape, height, or width of the distribution profiles. This makes 
the intersection an extremely useful cutpoint when multiple inputs are 
used or when the partition coefficients are known to vary with concentra- 
tion. In certain cases a mathematical expression can be written for the 
location of the intersection cutpoint. When a single input of solute is 
introduced and the conditions are ideal, i.e., constant K,, V,, VL, and no 
imperfect transfer effects, the volume of effluent at the intersection can 
be written 

(4) 
The transfer number nx at the intersection is 

nx = VXIV” 
where 

(T = ( ) +  
( 5 )  

and R = the number of tubes in the apparatus. Throughout the manu- 
script the convention K,, > K,, is used. 
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146 METZGER, BARFORD, AND ROTHBART 

r = n -  

The above equations are valid for effluent profiles. In the so-called 
“fundamental method of operation” where a limited number of transfers 
is performed such that the solute profiles remain in the apparatus, the 
solute profiles intersect when 

- 1  
PI In - 
p z  + 1 
4 2  In - 

, 41 

where 

v = V”/V, 

and n = number of transfers. 

profiles intersect 
Solving Eq. (8) for r gives the serial number of the tube where the molar 

(9) 

The equation for finding the intersection of ideal frontal curves has 
already been described (7). For intermediate cases or when nonideality 
occurs, computer simulation may be used to predict the intersection 
cutpoint. 

When a total-amount curve such as the solid line in Fig. 1 is encountered, 
in which it is impossible to get estimates for the retention volumes and the 
standard deviations, the total curve must be resolved into its individual 
components. Procedures for resolving curves which are assumed to be 
Gaussian or skewed Gaussian have been described (8). The curves shown in 
Fig. 1 correspond to the experiment with the molar solute ratio of lO.Oj1.9 
in Table 1.  The three cutpoints discussed above are indicated on the figure 
and are: A, the intersection of the normalized distribution profiles; B, 
the intersection of the molar profiles; and C, the cutpoint which gives 
equal impurities. 

Table 1 shows the results of three computer simulations. The initial con- 
ditions are the same for the three experiments except for the number of 
moles of solute 2, mZt.  The mass balance for the cutpoint which gives the 
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CHROMATOGRAPHY AND CCD 1 47 

T R A N S F E R  NUMBER 

FIG. 1 .  Location of cutpoints. See text and Table 1. 

minimum total percent impurity was calculated and is included for refer- 
ence. Of the three discussed, Glueckauf’s cutpoint gave the lowest TPI 
for unequal solute ratios, but highest for equal solute ratios. As was 
predicted, the highest value of QF was always found for the intersection 
of the molar profiles cutpoint. Values are calculated for t in Table 1. In 
the case where the solute ratio is 1, the two intersection cutpoints are 
equivalent. When the solute ratio is different from 1, the same cutpoint 
for the intersection of the normalized distribution profiles applies since 
t is independent of initial solute amounts. For effluent profiles where the 
conditions of ideality are met, the cutpoint which optimizes 5 is therefore 
always found by Eq. (4) with the term m,,/m,, omitted. 

The validity of 5 as a universal index of separation has been questioned 
( I ) .  The quantities recovered and the purities of each component and 
TPI experiments shown in Table 1 are clearly different. Yet following the 
procedure for determination of 5 optimum, one would have to conclude 
that the same separation had occurred in all three cases. It would appear 
that 5 is not meaningful for comparing experiments of this type. Likewise, 
5 is inappropriate within a given experiment (mlt # m2,) for indicating a 
good cutpoint. The clearest example of this is found in Table 1 where the 
solute ratio is 10.0/1.9. The cutpoint that corresponds to the highest value 
o f t  also corresponds to the lowest values of QF and the highest value of 
TPT, indicating that this cutpoint is the poorest of the three. 
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148 METZGER, BARFORD, AND ROTHBART 

TABLE 1 

Comparison of Cutpoints 

- mlr Description Cutpoint 
mt of cutpoint No. TPI m,t m21 m12 ~ Z Z  E QF 

__ 10.0 Intersection of 65/66 
1.90 normalized 

Intersection of 81/82 

Impurities equal 90/91 
Minimum total 1 lO/ll 1 

profiles 

molar profiles 

percent 
impurity 

- 10.0 Intersection of 65/66 
10.0 normalized 

profiles 

molar profiles 
Intersection of 65/66 

Impurities equal 63/64 
Minimum total 69/70 

percent 
impurity 

- 10.0 Intersection of 65/66 
19.0 normalized 

Intersection of 59/60 

Impurities equal 53/54 
Minimum total 52/53 

profiles 

molar profiles 

percent 
impurity 

50.6 8.63 0.34 1.37 1.56 0.68 10.2 

26.8 9.74 0.78 0.26 1.12 0.56 10.9 

18.7 9.91 1.04 0.09 0.86 0.44 10.8 
14.5 9.99 1.50 0.01 0.40 0.21 10.4 

31.7 8.63 1.81 1.37 8.19 0.68 16.8 

31.7 8.63 1.81 1.37 8.19 0.68 16.8 

32.2 8.35 1.57 1.65 8.43 0.67 16.8 
31.3 9.07 2.33 0.93 7.67 0.67 16.7 

36.6 8.63 3.44 1.37 15.56 0.68 24.2 

34.2 7.68 2.18 2.32 16.82 0.65 24.5 

33.2 6.36 1.23 3.64 17.77 0.57 24.1 
33.2 6.10 1.10 3.90 17.90 0.55 24.0 

Resolution is often used as a measure of separations. Problems in the 
use of this concept have been discussed (9). It appears that there is no 
single concept that fully measures the amounts and purities of separated 
components. Similarly a cutpoint cannot be found which minimizes the 
impurity and maximizes the quantity of the separated components 
recovered. The “best separation” is that which meets the desired goals. 

SOLVENT VOLUME RATIO 

One of the easiest parameters for an experimenter to adjust in liquid 
extraction is the solvent-volume ratio. The expression of Bush and 
Densen (10) for the solvent-volume ratio 
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CHROMATOGRAPHY AND CCD 1 49 

gives the best separation under certain conditions. In CCD this ratio 
gives the best separation when the fundamental method of operation is 
used and when the number of transfers is a constant. In this procedure a 
limited number of transfers is performed such that essentially no solute 
leaves the instrument. Often the number of transfers performed is equal 
to the number of tubes. For example, in a 50-tube CCD instrument in 
which 50 transfers are to be carried out, the optimum solvent-volume 
ratio is given by Eq. (10). Computer simulations of this case were per- 
formed using partition coefficients of K,, = 1.5 and K,, = 1.0. From Eq. 
(10) the optimum solvent ratio is 0.8. The results are summarized in Table 
2 for the intersection cutpoint. Clearly, 0.8 is the best solvent volume ratio. 
The results of performing 70 transfers in the 50-tube distributor are also 
given. Again for 70 transfers, 0.8 is the best solvent volume ratio. 

TABLE 2 

Comparison of Solvent-Volume Ratios for a Constant Number 
of Transfers in the Fundamental Procedure" 

V n QF TPI n QF TPI 

1 .o 50 1.52 47.8 70 1.57 40.4 
0.8 50 1.52 47.6 70 1.60 39.6 
0.5 50 1.51 48.9 70 1.59 40.9 
0.125 50 I .37 62.6 70 I .43 56. I 

a KD, = 1.5, KD,  = 1.0, R = 50. 

In  a more exhaustive study of solvent-volume ratios ( I [ ) ,  Eq. (10) was 
verified by simulations of a 200-tube instrument when 200 transfers were 
carried out. 

Grushka's derivation of the Bush and Densen relation (12) agrees with 
this conclusion. However, it will be shown that the Bush and Densen 
ratio is not an optimum for all CCD operations, but only for the special 
case that Grushka considered, i.e., the number of transfers is a constant 
and is less than the number of tubes in the CCD train. In addition, Eq. 
(7) of Ref. 12 is somewhat misleading because nreq cannot always be 
carried out with the tubes or stages at hand. These relationships will be 
discussed later in this report. 

In the fundamental procedure, the maximum number of transfers per- 
formed before some fraction of solute leaves the instrument can be 
calculated. The distribution of a solute profile in a CCD train is shown in 
Fig. 2. The quantity t is a factor times the standard deviation of the solute 
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TUBE N U M B E R  

FIG. 2. Distribution profile inside the countercurrent distributor. 

profile such that some fraction, F(t),  of the solute is still inside the instru- 
ment. For instance, when t = 2.326, 99% of the solute is inside the CCD 
train. The peak maximum is given by 

rmax = nP 

and the standard deviation is 

= JnPY 
The maximum number of transfers before some fraction of solute leaves 
the instrument occurs when 

rmax = R - 1 - to 

Substituting and solving for gives 

- - t  Jp4 * J t Z p q  + ~P(R - 1) 
2P 

Ji = 

Only the positive root is meaningful. In terms of KD 

- t  + $2 - 4 ( R  - 1)(1 + VK,) 
2 J v K ,  

Ji = 

The three simulations in Table 2 were extended to the maximum value of 
n for the fundamental procedure. The results are presented in Table 3. 

The solvent volume ratio of 0.125 gives the lowest TPI and 0.8 the 
highest total TPI. The observed value of n from the computer simulations 
agrees exactly with the value calculated from Eq. (1  1). The values for 
resolution within the distributor R: give additional evidence that the solvent 
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CHROMATOGRAPHY AND CCD 151 

TABLE 3 

Comparison of Solvent Volume Ratios for a Variable Number 
(Eq. (1 1)) of Transfers in the Fundamental Procedure 

v no nb TPI R,” Rid 
~~ 

0.8 12 12 39.0 0.41 0.43 
0.5 89 89 35.4 0.44 0.41 
0.125 229 229 29.8 0.54 0.52 

LI Computer simulation 
Equation (11). 
Equation (12). 

* Equation (13). 

volume ratio of 0.125 has given the best separation. The observed value 
of R,’ is found by 

The numerator of Eq. (12) has only one significant figure in our 50-tube 
experiment, which explains the discrepancy between the observed and 
predicted values for resolution. The predicted values of resolution are 
given by 

When computing the observed value of resolution, an estimate of the 
standard deviation must be made. The normal density function with a 
standard deviation of 1 and area of 1 has a height of 0.3989. Assuming 
the observed distributions are nearly Gaussian, (T can be estimated by 

0.3989 ) area 
observed height 

Calculations of 6 from Eq. (14) agree very well with theoretical values of 
a from the binomial distribution (T = ,/=. A comparison of a’s is made 
in Table 4 using data from the simulations in Table 3. 

Equation (14) is especially valuable for estimating a’s when the distribu- 
tion profile is narrow. 

The results of Table 3 show that the Bush and Densen equation, Eq. 
(lo), does not give the best separation when n is a variable. Since resolution, 
Eq. (13), is proportional to &, smaller values of Vallowing more transfers 
lead to better R,’ and TPI values. Equation (13) is rather misleading be- 
cause it appears that as V -+ 0, R,‘ + 0. For V = 0, of course, no separa- 
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152 METZGER, BARFORD, AND ROTHBART 

TABLE 4 

Theoretical and Calculated Values of the Standard Deviation 
of Solute Profiles 

V = 0.125, n = 229 V = 0.5, n = 89 V = 0.8, n = 12 

K D  = 1.0 KD = 1.5 KD = 1.0 KD = 1.5 KD = 1.0 K D  = 1.5 
~~ ~~~ 

r f  4.16 5.52 4.49 4.68 4.23 4.25 
ob 4.16 5.52 4.45 4.61 4.22 4.23 

a Equation (14). 
* Binomial distribution l/=. 

tion is possible but the behavior of RJ as V becomes a very small number 
must be examined by incorporating the concept of n as a variable. Sub- 
stituting for n from Eq. (1 I )  into Eq. (13) gives 

The KD in Eq. (11) is K,,; that is, the faster moving peak. Equation (15) 
is plotted in Fig. 3 using parameters from the previously discussed system; 
that is, K,, = 1.5, K,, = 1.0, R = 50, and t = 2.326. The values of R,’ for 
V < 0 are not physically realistic but the shape of the curve is of interest 
because in some systems the maximum will occur at a + V value. The 
maximum value of Eq. (15) occurs at 

The first term is small compared to the last two, so that for K,, >, 4&,, 
the maximum R,’ will occur at  a + V value. When K,, < 4&,, however, 
the smallest possible solvent volume ratio will give the highest value of R:. 

Up to this point we have been considering the fundamental procedure 
method where the solute remains in the CCD apparatus. In the single 
withdrawal method of operation, transfers are performed until the solutes 
have been eluted from the instrument. For a given number of tubes, R, 
the single withdrawal procedure gives a better separation than the fun- 
damental procedure because more transfers are performed. 

Using arguments similar to those in the derivation of Eq. (II), we can 
calculate the number of transfers necessary to elute all but a given percent 
of solute from the instrument. In this case we want r,,, = R - 1 + tcr. 
The expression relating n and V is 
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FIG. 3. Effect of solvent ratio on resolution inside the distributor. 

Equation (17) is plotted in Fig. 4 for KD = 1, R = 50, and t = 2.326. 
In calculating Eq. (17) the slower-moving peak with partition coefficient 
K,, should be used. Computer simulations of the single withdrawal method 
were performed using the same parameters as in the fundamental pro- 
cedure simulations. Equation (1 7) was tested for both partition coefficients. 
As shown in Table 5, the simulations agree well with the prediction from 
Eq. (17). 

The values of D in Table 5 from the computer simulation are found by 
Eq. (14). The theoretical D is given by 

The equation for resolution when operating in the single withdrawal 
method is given by 

Here the behavior of R,, the resolution of the peaks in the effluent as a 
function of V, is clear. As V becomes smaller, R, increases. Figure 5 shows 
a plot of R, vs V for the aforementioned parameters. Clearly the smallest 
solvent-volume ratio will give the highest resolution. Values of R, calcu- 
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n = R -  
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P1 In - 
p 2  + I 
9 2  In - 

\ 91 

0 0.5 1.0 1.5 2.0 2.5 
SOLVENT VOLUME R A T I O ,  V 

FIG. 4. Number of transfers required to elute 99% of solute. 

TABLE 5 

Number of Transfers Required for Near Complete Removal of 
Solute from CCD Train for Various Solvent Volume Ratios 

K D  = 1.0 KD 1.5 

V n" nb U C  U b  no nb QC U b  
~ ~ ~ ~~~~ 

0.125 602 601 60.00 59.54 420 420 41.09 41.12 
0.5 193 193 17.32 17.19 147 148 12.47 12.39 
0.8 141 142 11.85 11.77 112 113 8.74 8.67 

a Equation (17). 
Computer simulation. 
Equation (18). 

lated and observed and TPI values are given in Table 6 .  
Bush and Densen described a method of operation which is between the 

single withdrawal and the fundamental procedure. In this intermediate 
case, transfers are performed until the intersection of the molar profiles 
is at the last tube in the apparatus. The number of transfers required is 
found by rearranging Eq. (9). In Eq. (20), R is fixed and n is the variable: 
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0.4 111111 
0 0.2 0.4 0.6 0.8 1.0 

SOLVENT VOLUME RATIO,  V 

FIG. 5. Effect of solvent-volume ratio on resolution in the CCD output profile. 

TABLE 6 

Comparison of Solvent-Volume Ratios for Single 
Withdrawal Procedure 

V TPI R," R,b 

0.125 18.3 0.651 0.659 
0.5 26.0 0.541 0.559 
0.8 30.8 0.514 0.506 

a Computer simulation. 
Equation (19). 

Carrying out the number of transfers given by Eq. (20) results in an 
effluent fraction of m, , and rnZ1 and a fraction remaining in the apparatus 
of m22 and mI2.  An alternative statement of Eq. (10) is p1 = q2, so that 
Eq. (20) simplifies to n = 2R for the solvent-volume ratio given by Eq. 
(10). Simulations of the intermediate case were done for R = 50, K,, = 
1.5, and K,, = 1.0. The results are summarized in Table 7 and indicate 
that the optimum solvent-volume ratio for the intermediate case is not 
that given by Eq. (10). 

Clearly Eq. (10) is not an optimum for CCD in either the fundamental 
procedure method, the single withdrawai method, or for the intermediate 
case. The same conclusion that low values of V give the best separation 
also holds for partition chromatography for which countercurrent distri- 
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156 METZGER, BARFORD, AND ROTHBART 

TABLE 7 

Comparison of Solvent-Volume Ratios for the Intermediate Case 

Inside Outside 

V n" nh m22 t n l z  m i l  m21 TPI QF 

1 .o 91 91 0.83 0.17 0.83 0.17 33.8 1.66 
0.8 100 100 0.84 0.16 0.84 0.16 31.2 1.69 
0.5 132 132 0.86 0.12 0.88 0.14 26.0 1.74 
0.125 375 375 0.90 0.09 0.91 0.10 18.3 1.82 

Equation (20). 
Computer simulation. 

bution is a model. In partition chromatography this corresponds to 
keeping the void volume small. 

In practice an experimenter must consider factors such as time and cost 
of separations. A resolution of 1 .O will be sufficient, especially in analytical 
work. From experimental values of partition coefficients the value of V 
that will give a resolution of 1.0 can be predicted. Setting the left-hand 
side of Eq. (19) to 1 .O and solving for V gives a very cumbersome expression 
to evaluate. If, however, the approximation 

(KD, v + 1)' % (KD,V f 1)' [(KD,KD,)'V f 11' 
is made, the expression for V which gives a resolution of 1 .O is quite simple: 

FOT a value of R, other than 1.0, 

Equations (21) and (22) can give negative results, indicating that a sepa- 
ration giving unit resolution is impossible for the given KD, ,  KD,, and R.  
In this case the experimenter may wish to increase R to get the desired 
resolution. A lower bound for R can be found from Eq. (19) by setting 
R, = 1.0 and V = 0: 
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FIG. 6. Effect of solvent-volume ratio on resolution, intermediate case. 

Consider the experimental parameters presented in Table 6. Evaluation of 
Eq. (21) gives a negative volume, so R must be increased to obtain unit 
resolution. This agrees with Fig. 5 which also shows that unit resolution 
is impossible for R = 50. From Eq. (23) the lower bound on R is 100 
tubes. A realistic choice of R for this separation would be 150 tubes. 
Figure 6 shows that with the proper choice of V, a resolution of 1 is well 
within reason for KD, = 1.5, K,, = 1.0, and R = 150. After selecting V 
and R, the number of transfers required is given by Eq. (17). 

Small solvent-volume ratios require many transfers and consequently 
a long time. This is a definite disadvantage. A point in favor of small 
solvent-volume ratios is that the total amount of mobile solvent is reduced. 
The total upper phase volume required to complete a single withdrawal 
experiment is 

vureq = nV, = nvv, 
Substituting for n 'from Eq. (1 5), we get 

This equation is plotted in Fig. 7 for the parameters from the above 
discussion with KD = 1.0, K = 50, and t = 2.326. 

While theoretical considerations may indicate low values of V, several 
other factors limit the lowest volume ratio that can be used in CCD. 
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FIG. 7. Volume of mobile phase required to complete a single withdrawal 
operation. 

Phase diagrams of systems studied in our laboratory (23) show, for exam- 
ple, that when the solvent ratio is low, the isopycnic region is encountered 
a t  low solute levels. Also, the experiment can be altered by the fraction 
of upper phase retained in each tube (14). Using a larger V,  would lessen 
this effect. So while theoretical predictions and computer simulations 
indicate that Vu should be very small, practical aspects must be considered. 

CONCLUSION 

A cutpoint cannot be found which maximizes both the TPI and QF 
of the solutes. The intersection cutpoint was selected to compare ex- 
periments because it is relatively easy to find, maximizes the quantity 
factor while giving low values of the total percent impurity, and is mean- 
ingful for all sizes and shapes of distribution profiles. In general, the lowest 
possible solvent-volume ratio, not the Bush and Densen ratio, will give 
the best separation. 

Computer programs for simulation of countercurrent distribution are 
available from this laboratory upon request (25). 

SYMBOLS 

E efficiency 
KD partition coefficient, concentration of solute in upper phase/ 

concentration of solute in lower phase 
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"ij 
n 

nX 

P 

4 

QF 
R 
r 

rrnax 

RS 
RS' 

t 

TPI 
V 

VU 
V L  

V R  

v x  

amount of Component i in Regionj 
number of transfers 
number of transfers to the intersection of the molar distribution 
profiles 
probability of finding a solute molecule in the upper (mobile) 
phase 
probability of finding a solute molecule in the lower (stationary) 
phase 
quantity factor 
number of tubes in the apparatus 
serial number of a tube within the apparatus 
tube containing the maximum amount of solute 
resolution of effluent solute profiles 
resolution of solute profiles within the apparatus 
ordinate of cumulative normal distribution, 

F ( t )  = dX 

total percent impurity 
solvent volume ratio = Vu/VL 
volume of upper (mobile) phase 
volume of lower (stationary) phase 
retention volume, the accumulated volume of effluent to the 
solute peak 
accumulated volume of effluent to the intersection of the molar 
distribution profiles 

Greek Letters 

CT standard deviation 
5 extent of separation 
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